[bookmark: _GoBack][image: C:\Users\lsmith\Dropbox\2014-15 Curriculum Release\Templates\Logos\PLTW_Engineering5.jpg]
Activity 3.1.3 Basic Inputs Programming – VEX

Introduction
Inputs are devices which provide a processor with environmental information to make decisions. These devices have the capacity to sense the environment in a variety of ways such as physical touch, rotation, and light. An engineer can design a system to respond to its environment through the use of input sensors. In this activity you will use ROBOTC and VEX® robotics platform components to sense the environment.

Equipment
Computer with ROBOTC software
PoE VEX® testbed
PLTW ROBOTC template
Procedure
1. Form groups of four and acquire your group’s PoE VEX® Kit under your teacher’s direction.
2. Within your four student group, form a two student team known as Team A and a two student team known as Team B.
a. Team A will use the VEX® Testbed without the ultrasonic and the light sensor.
b. Team B will use the VEX® Testbed without the servo motor and flashlight.
c. At the appropriate time, both teams will exchange testbeds.
3. Connect the PoE VEX® testbed Cortex to the PC.
	[image:]

	PoE VEX® Testbed

Parts 1 and 2: Using the Bump Switch
4. Open the PLTW ROBOTC template. Click File, Save As, select the folder that your teacher designated, and then name the file A3_1_3_Part1.
5. In this activity you will use all of the testbed input and outputs. Go to the Motors and Sensors Setup window. Configure the Motors and Sensors Setup to reflect the inputs and outputs to be used. Note that additional motors and sensors that are physically attached may be configured; however, these are not required to be configured. Click OK to close the window.
	Cortex Wiring Diagram

	[image:]

	

	[image:]

	

	[image:]

	

	[image:]

6. Use the program below in the task main() section of the program between the curly braces.
		untilBump(bumpSwitch);
startMotor(rightMotor, 63);
wait(5);
stopMotor(rightMotor);

7. Power on the Cortex.
8. Save the program. Compile and download the program. If you have any errors, check with your instructor to troubleshoot your program.
	[image:]

9. Press Start to run the program and observe the behaviors.
	[image:]

10. Document what this program would look like as pseudocode simple behaviors.
	

11. Open the PLTW ROBOTC template. Click File, Save As, select the folder that your teacher designated, and then name the file A3_1_3_Part2.
12. The wiring configuration and motors and sensors tabs should be the same as above.
13. Write a program that performs the following simple behaviors. Use the natural language functions where appropriate as shown below. Add comments at the end of each command line to explain the purpose of each step.
a. Wait for the bumper switch to be bumped. Note that a bump occurs when a switch is pressed and released and not simply pressed and held.
b. Both motors turn on at half power until the sensor is bumped again.
c. Both motors should then move in reverse at half power for 3.5 seconds.
d. Both motors will stop.
	[image:]
	
	[image:]

	Natural Language
Movement
	
	Natural Language
Special

	
	
	

	[image:]
	
	[image:]

	Natural Language
Until
	
	Natural Language
Wait

14. Test the program and troubleshoot if needed until the expected behavior has occurred. Save the program.

Part 3: Using the Potentiometer
15. Open the PLTW ROBOTC template Click File, Save As, select the folder that your teacher designated, and then name the file A3_1_3_Part3.
16. The wiring configuration and motors and sensors tabs should be the same as above.
17. Use the program below in the task main() section of the program between the curly braces.
	turnLEDOn(green);
untilPotentiometerGreaterThan(2048, potentiometer);
turnLEDOff(green);
startMotor(leftMotor, 63);
wait(3.5);
stopMotor(leftMotor);

18. Download and run the program. Observe the behaviors and document what this program would look like as pseudocode simple behaviors.
	

19. Modify your program to perform the pseudocode below.
a. Verify that the potentiometer is at a value of less than 2048.
b. Turn on the greenLED until the potentiometer is at a value greater than 2048.
c. Turn off the greenLED.
d. Turn on the leftMotor at half power until the potentiometer is at a value of less than 2048.
e. Turn leftMotor off.
	[image: C:\Users\gholt\Desktop\VEX Images From Site\potentiometer-a_2.jpg]

	Potentiometer

20. Test the program and troubleshoot if needed until the expected behavior has occurred. Save the program.

Part 4: Using the Optical Shaft Encoder
21. Open the PLTW ROBOTC template. Click File, Save As, select the folder that your teacher designated, and then name the file A3_1_3_Part4.
22. The wiring configuration and motors and sensors tabs should be the same as above.
23. Use the program below in the task main() section of the program between the curly braces.
	startMotor(leftMotor, 63);
startMotor(rightMotor, 63);
untilEncoderCounts(480,quad);
stopMotor(leftMotor);
stopMotor(rightMotor);

24. Download and run the program. Observe the behaviors and document what this program would look like as pseudocode simple behaviors.
	

25. Modify your program to perform the pseudocode below.
a. Turn on both motors forward until the encoder has counted 480 degrees.
b. Turn on both motors in reverse until another 3.5 rotations of the encoder have passed.
c. Turn off both motors.
	[image: C:\Users\gholt\Desktop\VEX Images From Site\Optical_Shaft_Encoder_Figure_1a.jpg]

	Optical Encoder

26. Test the program and troubleshoot until the expected behavior has occurred. Save the program.
Part 5: Using the Infrared Line Follower
27. Open the PLTW ROBOTC template. Click File, Save As, select the folder that your teacher designated, and then name the file A3_1_3_Part5.
28. The wiring configuration and motors and sensors tabs should be the same as above.
29. Set the line follower threshold. Thresholds allow your robot to make decisions via Boolean comparisons.
a. Calculate an appropriate threshold with the aid of the Sensor Debug Window.
	[image:]
[image:]

b. Open the Sensor Debug Window.
	[image:]

c. Verify that the Program Debug Window’s Refresh rate displays Continuous. Select Continuous from the dropdown menu if it is paused.
	[image:]

d. Place a white object (e.g., paper) within ¼ and 1/8 in. in front of the line follower sensor. Record the value for that sensor displayed in the Sensors Debug Window. Make sure that enough light is available to illuminate the white object or the sensor will register darkness.
	[image:]

	

e. Place a dark object within ¼ and 1/8 in. in front of the line follower sensor. Record the value for that sensor displayed in the Sensors Debug Window.
f. Add the two values and divide by two. The result is the threshold for that sensor.
30. Use the program below in the task main() section of the program between the curly braces. Change the value 1425 to the value calculated in the previous step.
	setServo(servoMotor, 127);
untilLight(1425, lineFollower);
setServo(servoMotor, -127);
wait(2);

31. Download and run the program. Observe the behaviors and document what this program would look like as pseudocode simple behaviors.
	

32. Modify your program to perform the pseudocode below.
a. Move the servo to position 127 until a dark object is detected.
b. Move servo to position -127.
	[image: C:\Users\gholt\Desktop\VEX Images From Site\276-2154-line-tracker.jpg]

	Line Follower

33. Test the program and troubleshoot until the expected behavior has occurred. Save the program.

34. Teams prepare to share testbeds. Team A will install one ultrasonic sensor on the testbed. Team A completes the following steps related to the ultrasonic sensor and then exchanges testbeds with team B. Team B completes steps associated with the ultrasonic sensor.
Part 6: Using the Ultrasonic Distance Sensor
35. Open the PLTW ROBOTC template. Click File, Save As, select the folder that your teacher designated, and then name the file A3_1_3_Part6.
36. The wiring configuration and motors and sensors tabs should be the same as above.
37. Use the program below in the task main() section of the program between the curly braces.
	startMotor(leftMotor, 63);
startMotor(rightMotor, 63);
untilSonarLessThan(20, sonar);
stopMotor(leftMotor);
stopMotor(rightMotor);
turnLEDOn(green);
wait(6.25);
turnLEDOff(green);

38. Download and run the program. Observe the behaviors and document what this program would look like as pseudocode simple behaviors.
	

39. Modify your program to perform the pseudocode below.
a. Wait until an object is detected within 20 cm to turn both motors on.
b. Wait for the object to move more than 25 cm away before turning the motors off.
	[image:]

	Ultrasonic Sensor

40. Test the program and troubleshoot if needed until the expected behavior has occurred. Save the program.
41. Exchange testbeds. Team B will complete the ultrasonic steps.
42. Follow teacher direction and either print the programs or submit electronically with this activity.

Conclusion
1. Describe any challenges that you encountered while developing the program.

Describe three applications for the use of sensors that you worked with in this activity.

© 2012 Project Lead The Way, Inc.
Principle of Engineering Activity 3.1.3 Basic Inputs Programming VEX – Page 1
image5.png
Motors and Sensors Setup

Sendod Hodshs | Sl Pas| Motos | VEX 20 Ansog Sensrs 1: | VEX CofexDigil Sensors 112

Pot

pot10

Name Tope Reversed Encoder Pot
et [VBRsht ~] [
Jrorotor [Vex%sMotor~] [[Noe)
[t [V ~] [[Noe)
| I . —
| I . —
| I . —
| I . —
| I . —
serotictor [(weseno v] O

—

PID Cortrol

[m]
[m]

image6.png
Motors and Sensors Setup

‘Standard Models | Seral Pots | Motors | VEX 20 Analog Sensors 1-8 | VEX Cortex Digtal Sensors 1-12.

et o SerorTpe
o [l
I =
w s
I —
FN — P a——
E I P a——
L —
I — P a——

image7.png
Motors and Sensors Setup

Standa odeh | Serl Fots | Hotors | VEX 20 Ansog Sensrs -] VEXCofex Digtl Sensors 112 |

et o SerorTpe
wn fwswsd
w2 oo
P
e [
s e
ws [
w [
s [
as [
PR — T ra—
PR e— T ra—
we e —

image8.png
Robot

Comg

and Download Pragram

[#8 Compile Program

VEX Cortex Communication Mode

Compiler Target
Debugger Windows
Advanced Tools

Platform Type

Motors and Sensors Setup

Download Firmware

image9.png
Program Debug [=

— o
S

Step Over | [Step Out

image10.png
2

image11.png
Setup

Movement

Robot Motion

Wait

Until

& Special
tumFlashlightOff(flashlightPort);
tumFlashiightOn(fleshlightPort brightness);
tumLEDO(digtalPort):
tumLEDOn(digitalPort;

Sensors

Timing

Undefined Entries

2

image12.png
~Control Structures

Setup
Movement

1Bump(sensorPort, delayTimeMS);
IButtonPress(button);

Dsrkhreshold, sensorPort):
JEncoderCounts(distance, sensorPort):
Light(threshold, sensorPort);
IPotentiometerGreaterThan(position, sensorPort);
IPotentiometerLessThan(position, sensorPort);
IRelease(sensorPort):

IRotations(rotations, sensorPort);
ISonarGreaterThan(distance, sensorPort;

ISonarL essThan(distance, sensorPort):
Mouch(sensorPort):

Special
Sensors
Timing
Undefined Entries

image13.png
£ Wait
wait(waitTime);
waitlnMilseconds(waitTime);

2

image14.jpeg

image15.jpeg

image16.png
€ ROBOTC

File | Edit View Robot Window Help

New, »
Save.
Open and Compile o

Open Sample Program

FIED cnes
Save s, Curteattes
@ sovean Curleshites

Close cnew

image17.png
€ Open

@S] [l « ROBOTC Development Environment 4X » Sample Programs » VEX2 b Line Follower

=

X Favories Name Dstemodified Type
B Desktop.] Line Trackfor Time 1024/2013816PM _ CFile
[Downloads [__ Single Sensor Lne Trac 10/15/2012330PM_CFile
3 Dropbox (Project. | _ Trple Sensor Line Tracking 10/15/2012330PM CFile

% Recent Places

image18.png
€ ROBOTC

File Edit View

~Control Structur]

Setup
Movement

Until
Special
Sensors

Timing
Undefined Entries|

Robot | Window _Help

Compile and Download Program 5.

4 compile Program 7

VEX Cortex Communication Mode

Compiler Target

Debugger Commands.

Open Debugger Manually

M Frogen

e Sensor Line Tracking.c

ma config(Sensor, in2, 1
ma config(Motor, port2,
ma config(Motor, ports,

code automatically generated

Debugger Windows v

Advanced Tools »

Platform Type

Motors and Sensors Setup

Download Firmware

1a
15
16
17

Global Variables
Local Variables

Timers.

Motors fine
VEXLCD Remote Screen

Competition Control

System Parameters pror®
Debug stream but m

s, 1u

image19.png
Program Debug

Debug Status:

[t (St

Step Over | [Step Out

image20.png
Index Sensor Type Value
ineFollower Line Follower 2865

image21.jpeg

image22.png

image2.jpeg
PLTW Engineering

image3.jpeg

image4.png
Encoder (upper)

Encoder (lower) \
ANALOG INPUTS

Line Follower
Potentiometer

Light Sensor

FEFIEECEN

ANALOG

MOTOR OUTPUTS

,, Flashlight
. Right Motor
» Left Motor

i SwiHeh ™™
»_Bump Switch

N Enco‘ﬂer(ower)
._Encoder (upper)

5._Ultrasonic (in) [

DiGTAL
Holon

&_Ultrasonic (out)

..

—— B |

1= Green LED

soeanen.

U=

