[image: image1.jpg]PLTW Engineering

Activity 3.1.2 Basic Outputs Programming – VEX
Introduction

Computer programs are used in many applications in our daily life. Devices that are controlled by a processor are called outputs. These devices have a variety of functions such as producing motion, light, and sound. In this activity you will use ROBOTC to control several outputs.
Equipment

· Computer with ROBOTC software

· PoE VEX® Testbed

Procedure

1. Form groups of four and acquire your group’s PoE VEX® Kit under your teacher’s direction.
2. Within your four student group, form a two student team known as Team A and a two student team known as Team B.
a. Team A will use the VEX® Testbed without the ultrasonic and the light sensor.
b. Team B will use the VEX® Testbed without the servo motor and flashlight.
c. At the appropriate time, both teams will exchange testbeds.
3. Connect the PoE VEX® testbed Cortex to the PC.

	[image: image2.png]

	PoE VEX® Testbed

Part 1: Controlling LEDs
4. Open the PLTW ROBOTC template. Click File, Save As, select the folder that your teacher designated, and then name the file A3_1_2_Part1.

5. In this activity you will use the Green LED, rightMotor, leftMotor, and Servo. Leave the previously connected motors and sensors wired to the Cortex. Go to the Motors and Sensors Setup window. Configure the Motors and Sensors Setup to reflect the inputs and outputs to be used. Note that additional motors and sensors that are physically attached may be configured; however, these are not required to be configured. Click OK to close the window.

	Cortex Wiring Diagram

	[image: image3.png]MOTOR OUTPUTS

. Right Motor
» Left Motor
5.Servo Motor

s

[==t)

oy
g iy
Sosstccciiciicicoee:| OO
I
T
5
g H c
: ¢ 8
g o] £

	

	[image: image4.png]Motors and Sensors Setup

‘Standard Models | Motors |VEX 2.0 Analog Sensors 1:8 | VEX Cotex Digtal Sensors 1-12

Pot Name Tive Reversed Encoder Pott PID Control
o —
pot2 [ightMotor [VEX269Motor] [None] [m]
pons [etionr [) [(Nne —v] O
o
pns [
pws [
N —
S —
pord envobiotor
T —

ok [sl [oo][

	[image: image5.png]Motors and Sensors Setup

‘Standard Models | Serl Pots | Motors | VEX 20 Anslog Sensors 18 | VEX Cotex Digtal Sensors 112

]

il
n2

"
s
s
s
B
e

] [

) [Concol] [oo

	[image: image6.png]Motors and Sensors Setup [=]

Sendrd Hodshs | Sl Pas | Wotors | VEX 20 Anaog Sensers 1] VEX CotexDigtl Sensors 112
Pot Neme
dgtit

I
i

3

g
IEEEEE

$
?

1]

ok][cancel][peoy [hee]

6. Use the program below in the task main() section of the program between the curly braces.
	turnLEDOff(green);

wait(1);

turnLEDOn(green);

wait(1);

turnLEDOff(green);

wait(1);

turnLEDOn(green);

wait(1);
turnLEDOff(green);

	

	[image: image7.jpg]

	Green LED

7. Power on the Cortex.

8. Compile and download the program. If you have any errors, check with your instructor to troubleshoot your program.
	[image: image8.png]Robot

Comg

and Download Pragram

[#8 Compile Program

VEX Cortex Communication Mode

Compiler Target
Debugger Windows
Advanced Tools

Platform Type

Motors and Sensors Setup

Download Firmware

9. Press Start to run the program and observe the behaviors.
	[image: image9.png]Program Debug [=

— o
S

Step Over | [Step Out

10. Save the program and document this program as pseudocode simple behaviors.

	

Part 2: Controlling one motor
11. Open the PLTW ROBOTC template. Click File, Save As, select the folder that your teacher designated, and then name the file A3_1_2_Part2. Setup the motors and sensors as done previously.
12. The wiring configuration and motors and sensors tabs should be the same as above.
13. Write a program that performs the following simple behaviors. Use the natural language functions where appropriate as shown below. Add comments at the end of each command line to explain the purpose of each step.
a. Turn the rightMotor on forward at half speed for 5 seconds.
b. Stop the motor.
	[image: image10.png]

	
	[image: image11.png]& Special
tumFlashlightOff(flashlightPort);
tumFlashiightOn(fleshlightPort brightness);
tumLEDO(digtalPort):
tumLEDOn(digitalPort;

2

	Natural Language – Movement
	
	Natural Language – Special

	
	
	

	[image: image12.png]- Until
untilBump(sensorPort, delayTimeMS):
uttonPress(button);
untiDark(threshold, sensorPort);
ncoderCounts(distence, sensorPort);
ight(threshold, sensorPort);
otentiometerGreaterThan(position, sensorPort):
otentiometer s Than(positon, sensorPort);
lease(sensorPort);
untiRotations(rotations, sensorPort):
narGreaterThan(distance, sensorPort):
untifSonarLessThan(distance, sensorPort);
fouch(sensorPort):

pecial
Sensors
Timing
Undefined Entries

	
	[image: image13.png]o

	Natural Language – Until
	
	Natural Language – Wait

	[image: image14.jpg]

	Motor

14. Test the program and troubleshoot if needed until the expected behavior has occurred.
15. Modify the program above to include this simple behavior.
Turn on leftMotor at the same time that rightMotor is turned on.

16. Test the program and troubleshoot if needed until the expected behavior has occurred.
17. Modify the program above to include this simple behavior.
Reverse both motors using two different programming methods.
18. Test the program and troubleshoot if needed until the expected behavior has occurred. Save the program.
Part 3: Controlling two motors
19. Open the PLTW ROBOTC template. Click File, Save As, select the folder that your teacher designated, and then name the file A3_1_2_Part3. Setup the motors and sensors as done previously.
20. Write a program that performs the following simple behaviors. Use the natural language functions where appropriate as shown below. Add comments at the end of each command line to explain the purpose of each step.
a. Turn the rightMotor on forward at half speed for 5 seconds, and then stop.

b. Turn the leftMotor on in reverse at three-fourths speed for 2.5 seconds, and then stop.

c. Turn both motors on at full power while spinning in the same direction for 7.25 seconds, and then stop.
21. Test the program and troubleshoot if needed until the expected behavior has occurred. Save the program.
Part 4: Controlling a servomotor
22. Team A will open the PLTW ROBOTC template. Click File, Save As, select the folder that your teacher designated, and then name the file A3_1_2_Part4. Setup the motors and sensors as done previously.
23. Use the program below in the task main() section of the program between the curly braces.
	setServo(servoMotor, -127);

wait(2);

setServo(servoMotor, 0);

wait(2);

setServo(servoMotor, 127);

wait(2);

	[image: image15.jpg]

	Servo Motor

24. Power on the Cortex and compile and download the program. If you have any errors, check with your instructor to troubleshoot your program. Save the program.
25. Document what this program would look like as pseudocode simple behaviors.

26. Write a program that performs the following simple behaviors. Use the natural language functions where appropriate as shown below. Add comments at the end of each command line to explain the purpose of each step.
a. Program the servo to go to position -127 for 2 seconds.
b. Go to position -63 for 3 seconds.
c. Go to position 0 for 2 seconds.
d. Go position 63 for 3 seconds.
e. Go to position 127 for 2 seconds.
27. Test the program and troubleshoot if needed until the expected behavior has occurred. Save the program.
28. Team A will exchange testbeds with team B. Team B will complete the previous steps.
29. Follow teacher direction and either print the programs or submit electronically with this activity.

Conclusion
30. Describe any challenges that you encountered while developing the program.

31. Describe how these outputs might be used in an application.

[image: image16.png]

© 2012 Project Lead The Way, Inc.

Principles of Engineering Activity 3.1.2 Basic Outputs Programming VEX – Page 6

